Limit boundary value problems of retarded functional-differential equations
نویسندگان
چکیده
منابع مشابه
Periodic Boundary Value Problems for Second-Order Functional Differential Equations
Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...
متن کاملTwo Point Boundary Value Problems for Nonlinear Functional Differential Equations
This paper is concerned with the existence of solutions of two point boundary value problems for functional differential equations. Specifically, we consider /(f) = L(t, yt) +f(t, y,), Mya + Nyb = <A, where M and N are linear operators on C[0, K\. Growth conditions are imposed on /to obtain the existence of solutions. This result is then specialized to the case where L(t, yt) = A(t)y(t), that i...
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملNumerical Ordinary Differential Equations - Boundary Value Problems
Consider a second-order linear 2-point boundary value problem (BVP) −z + p(x)z + q(x)z = r(x) (10.1) z(a) = α (10.2) z(b) = β (10.3) where p(x), q(x) and r(x) are given. By defining y(x) := [z(x), z (x)] T , the problem can be changed into a first-order differential system y = 0 1 q(x) p(x) y + 0 −r(x) (10.4) y 1 (a) − α = 0 (10.5) y 2 (b) − β = 0. (10.6) Remark. In general, a linear 2-point BV...
متن کاملApplication of Shannon wavelet for solving boundary value problems of fractional differential equations I
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional diff<span style="font-family: NimbusRomNo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1986
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1986-0848873-5